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Abstract

Mapping desertification in semi-arid and sub-humid region is difficult due to cloud cover 
data-unavailability. In this study, the potential of the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) and ENVISAT ASAR for desertification 
mapping in semi-arid coastal area have been demonstrated. The project aims to develop a 
means of providing annually updated information at a range of spatial scales for local 
government and land use planners.

A desertification index was developed based on three parameters extracted from remote 
sensing data: land surface temperature (LST), vegetation index, and soil moisture. LST and 
vegetation index was extracted from ASTER thermal and VNIR band respectively. Soil 
moisture was estimated from the backscatter differences between wet and dry season (σwet –
σdry). The result showed that vegetation index and LST are strongly related to moisture stress 
and can explain the variation of desertification level. Soil moisture estimation from delta
backscatter (σwet – σdry) showed a strong relation with field measurements (r2 = 0.89) for bare 
land and sparsely vegetated areas. When the vegetation density is higher (NDVI>0.5), the 
relation is weaker (r2 = 0.58). The final step is to combine all 3 parameters into a angle 
desertification index.

INTRODUCTION

1.1 Background

Desertification is a form of land degradation in arid, semi-arid and dry sub-humid areas 
resulting from various factors, including climatic variations and human activities (UNCCD, 
Article 1). Desertification undermines the land's productivity and contributes to poverty.
Prime resources - fertile topsoil, vegetation cover, and healthy crops - are the first victims of 
desertification. The people themselves begin to suffer when food and water supplies become 
threatened. In the worst cases, they endure famine, mass migration, and colossal economic 
losses. Over 250 million people are directly affected by desertification, and some one billion 
are at risk (UN, 2003).

Since the International Convention on Desertification of the United Nations that came
into force in 1996 (UNCCD, 2004), the need to measure land degradation and desertification 
processes has substantially increased. The most obvious way to improve the availability and 
accuracy of desertification monitoring would be to employ remote sensing data, such as aerial 
photography and satellite imagery, which are design to survey ground condition over a large 
area (Grainger, 1990). A well-design remote sensing programme could in theory tell us how 
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large an area was decertified, and by carrying out regular surveys we could detect increase in 
the intensity and extent of degradation in different area.
If a frequent repetitive coverage with relatively low spatial resolution is desired one would 
certainly chose to use the AVHRR system available from the polar-orbiting satellites of the 
NOAA series. Based on NOAA imagery we can produce normalized vegetation index 
(NDVI) for the entire earth on a twice daily basic under cloud free conditions. Despise its low 
spatial resolution (1.1 km × 1.1 km), the data is so far one of the most widely used to analyze 
biomass changes at the global and regional scale (Tucker, 1980; Tucker, 1987). Alternatively, 
if looking for the highest spatial resolution available, even at the low repetition rates, one 
would chose one of the available Earth observation system. Since its came into operation in 
1972, Landsat image have been successfully used to map the change of sand dune, 
denudation forming in West Africa (Dwivedi et al., 1993; Mering et al., 1987; Robinove et 
al., 1981). Merging with Radar data, Landsat imagery shows its ability to detect the change in 
desertification process at a more detail level (Rebillard et al., 1984).

Due to the tragedic crisis in Sahara Shale in 1970s which captured the public’s attention, 
most of the desertification mapping in the early days was focused on arid and hyper arid 
region. But in the new concept of desertification as mentioned before as a “degradation 
process”, it also happen in humid and sub humid regions with a accelerating rate because of 
poor land use practice and overgrazing. Mapping desertification in this area however is 
difficult due to cloud cover, data unavailability and limited investment. Current 
desertification mapping techniques are developed for arid region and are inappropriate for 
sub-humid desertification, both in term of scale and ecosystem characterization. There is a 
need for new monitoring approach specific for sub-humid area which utilize readily available 
earth observation system in a cost effective solution.

The case study in this paper is conducted in Vietnam. Geographically, Viet Nam is not 
designated as an arid or semi-arid country, however, some regions within the country are at 
risk from desertification. It is estimated that 9.34 million hectares of land in Viet Nam are 
degraded, and a substantial part of that is prone to desertification. Over the past 10 years, 
drought has caused severe impacts upon the agricultural and forestry production in many 
areas, especially in the central highland and coastal area of Viet  Nam  (UNCCD, 2002). In 
the coastal area long dry seasons together with short heavy rainfall in the rainy season have 
led to the following types of degradation:

 Moving sand due to strong wind along the coastal area. 
 Salinization in sandy soil, formation of salt crust on soil surface.
 Water erosion due to deforestation and overgrazing.
The net result of such land degradation is significant disturbance of ecosystems with loss 

of biological and economical productivity. Mapping and monitoring of degradation processes 
are thus essential for drafting and implementing a rational development plan for sustained use 
of semi-arid land resources of Vietnam. The specific objectives of this study are: (1) to 
develop a operational methods for desertification mapping specific for   semi-arid and sub-
humid areas which combine the advantages of several types of readily available satellite 
imagery; (2) To test the new desertification mapping method as a quantitative assessment in
the coastal areas of Vietnam.

STUDY AREA

The study area is located in Binh Thuan province, in south central Vietnam. The area 
faces the Pacific Ocean to the east with a coastline of 192 km (Fig. 1). The Truong Son 
mountain range, running from North-east to South-west, block most of the rain coming from 
the Thailand’s sea, thus created semi arid conditions for the area.
Binh Thuan province can be divided into 4 main landscapes:



3

- Sand dunes along the coast (18.2% of total area).
- Alluvial plains (9.4% of total area).
- Hilly areas, with the average elevation of 50 m asl (31.6% of total area).
- The Truong Son mountain range (40.8% of total area).

Binh Thuan is the driest and hottest region of Vietnam. The climate is a combination of 
tropical monsoon and dry and windy weather. The mean annual temperature is 27°C, with 
average minimum 20.8°C in the coldest months (December, January), and an average 
maximum of 32.3°C in the hottest months (May and June). Binh Thuan also receives more 
solar radiation than any other area in Vietnam, with 2911 sunshine hour annually – or almost 
8 hour per day.

Rainfall in this area is limited and irregular. Annual precipitation is 1024 mm, while 
evaporation in some years is equivalent to precipitation. At some locations annual rainfall can 
be as low as 550 mm. The dry season is from November to April, with 60 days of January 
and February having almost no rain. The rainy season is from May to October with heavy 
rain concentrated in a short periods with up to 200 mm/day.

10 km

Figure 1. Location of study area. On the right is an ASTER image acquired on 22 Jan 
2003 (band 321 in RGB). In the image red colours represent vegetated areas, white and 
yellow represent sandy soil.

DATA RESOURCES

1.2 Parameters required for desertification monitoring.

Desertification is a complex process which involves both natural factor and human 
activities. Depending on the level and nature of management, such as decision making, 
economic policy, and land use management, different kinds of information are required. 
DESERTLINKS (a European commission funded project) have listed 150 indicators for 
desertification assessment which involve ecological, economic, social and institutional 
indicators (Brandt et al., 2002). However, for desertification mapping three parameters are of 
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key importance – land surface temperature (LST), vegetation cover, and soil moisture. There 
have been several approaches adopted for desertification mapping. The first two are ground 
survey and image interpretation. Although different in scale and technique, both rely on 
expert knowledge and ability to visually analyse the landscape and group it to several 
predefined categories. The third, remote sensing based, approach is digital image 
classification based on a single image. The techniques and algorithms used can vary, but all 
are based on the spectral similarity of pixel values and a set of sample points with known 
characteristics. Class adjustment is based on local knowledge and ground observation.

The fourth approach is a group of techniques aiming at modelling the problem using 
physical parameters related to the land process, derived from Earth Observation data.  Using 
geophysical parameters it is possible to assess the problem as it happens, and produce results 
that are comparable between different geographic regions. As mentioned above there are 
many indicators that can be used for desertification mapping, but not all are available or 
appropriate. However, in remote sensing we always need to generalize the problem to a few 
important factors that matter the most. To standardize the mapping method we develop a 
desertification index based on 3 parameters which strongly reflect the changes in 
desertification environment. These parameters are: land surface temperature (LST); 
vegetation cover; and soil moisture. 

Satellite-derive land surface temperature (LST) has a strong relationship with the 
thermal dynamic of land processes (Dash et al., 2002), and can be use to assist is assessment 
of vegetation condition. In dry conditions high leaf temperatures are a good indicator of plant 
moisture stress and precede the onset of drought (McVicar, 1998), and surface temperature 
can rise rapidly with water stress and reflect seasonal changes in vegetation cover and soil 
moisture (Goetz, 1997).  

In arid conditions vegetation provides protection against degradation processes such as 
wind and water erosion. Vegetation reflects the hydrological and climate variation of the dry 
ecology. Decreasing  vegetation cover, and changes in the species composition of vegetation 
are sensitive indicators of land degradation (Haboudane et al., 2002). 
Soil moisture is an important variable in land surface hydrological processes such as 
infiltration, evaporation and runoff; and is controlled by complex interactions involving soil, 
plant and climate (Puma et al., 2005). In arid and semi-arid areas, soil moisture can be use to 
monitor drought patterns and water availability for plant growth (Hymer et al., 2000). In an 
integrated mapping method, soil moisture can compensate for the weakness of vegetation 
indices in areas of sparse vegetation cover (Saatchi, 1994). 

1.3 Remote Sensing data resources

Currently, medium spatial resolution sensors offer data with spatial resolution higher 
than 1 km. The sensors such as GLI, MODIS and MERIS can be considered as the next 
generation of NOAA AVHRR or SPOT VGT, offering multiple scale data (250 - 1000 m), 
improved spectral resolution (more band, better atmospheric calibration), and improved 
radiometric accuracy. At this resolution, a single scene can cover the entire coastal area of 
Vietnam. Some of the new high spatial resolution sensors are also listed in Table 1. This 
group of sensors provides multispectral imagery with resolutions between 5 and 100 m. 
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Table 1. Currently operational high spatial resolution multi-spectral sensors

Platform LANDSAT 7 SPOT EO-1 TERRA
Instrument ETM+ HRG ALI ASTER
Resolution 15 to 120 m 10 to 20 m 10 to 30 m 15 to 90 m
Wavelength PAN, SWIR, TIR PAN, VNIR VNIR, SWIR VNIR, SWIR, TIR
Number of channels 7/8, 4 10 14
Swath width 185 km 60 km 37 km 60 km
Agency NASA SPOTIMAGE NASA NASA
Price ($/km2) 0.018 – 0.158 0.67 –  1.43 Non-commercial Non-commercial

Another sensor technology that is important to desertification monitoring is Synthetic 
Aperture Radar (SAR). The all-weather capability of spaceborne SAR sensors (

Table 2) is a major advantage over optical systems. SAR data can be used to estimate 
soil moisture content, which is an important parameter in semi-arid land where vegetation 
growth is heavily dependent on water availability (Karnieli et al., 2002; Moran et al., 1998; 
Tansey and Millington, 2001; Wang et al., 2004). 

Table 2. Currently operated SAR sensors

Platform ERS-1/2 ENVISAT Radarsat-1/2/3 JERS-1
Instrument SAR ASAR SAR SAR
Resolution 25 m 30-150 m 30-150 m 25 m
Frequency C C C L
Polarisation VV HH/HV HH/VV/HV/VH HH
Swath 100 km 50-500 km 10-500 km 75 km
Agency ESA ESA CSA NASDA

1.3.1 Specific requirements
In the context of the case study, suitable remote sensing data sources are sensors which 

could provide all or some of the parameters discussed in section 3.1. It is important to note 
that the “value” of each sensor is not only dependent on high spatial resolution, but also the 
spectral resolution, cost, coverage, calibration standards, and availability. Desertification is a 
long-term process, so an operational desertification monitoring system must be based on a 
robust and reliable suite of satellite sensors that can guarantee data continuity, quality, and 
availability on a decadal scale. It is for these reasons that only sensors from government-
supported non-commercial Earth Observation programmes were considered for this project. 
Another issue that needs to be considered is data cost. As most desertification occurs in 
developing countries, a relatively low cost monitoring solution is required. 

The high spatial resolution sensor selected for this project was ASTER. ASTER offers 
several advantages over rival sensors. It provides more bands in SWIR and TIR (6 bands in 
SWIR and 5 bands in TIR) than Landsat 7 ETM+ while retaining adequate spatial resolution 
in visible bands. The 5 TIR bands offer a more precise measurement of land surface 
temperature with an accuracy of 0.3oC (Wan, 1999). Cost is an issue, with ASTER level 2 
products available free of charge, while level 1 cost £50 per scene.

For radar imagery, we chose ENVISAT ASAR (Advance Synthetic Aperture Radar). 
ASAR provides multiple swath-widths with spatial resolutions ranging from 30 to 150 m. 
Thus it can be used for both national and local scale. Another advantage of ASAR is that the 
ENVISAT satellite also carries the MERIS sensor which can offer optical data acquisition 
simultaneously with SAR data.
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A key feature of all the data sources listed above is the availability of standardised 
product formats and rigorous calibration, important for the development of long term 
quantitative monitoring.

1.3.2 RS data acquired
During the study period two sets of remote sensing data were collected representing dry 
season and wet season conditions. The dataset
(Table 3) was successfully acquired in January 2005.

Table 3. Image acquisition

Date of acquisition Sensor Level/ Image mode
19 Jan 2005 ENVISAT ASAR Level 2B/ ASAR IMG
19 Jan 2005 ENVISAT ASAR Level 2B/ ASAR IMP
14 Jan 2005 ASTER Level 1B/ AST_1B
14 Jan 2005 ASTER Level 2/ ASTER_08
25 Oct 2005 ASTER Level 1B/ AST_1B
25 Oct 2005 ASTER Level 2/ ASTER_08
28 Oct 2005 ENVISAT ASAR Level 2B/ ASAR IMG
28 Oct 2005 ENVISAT ASAR Level 2B/ ASAR IMP

1.4 Other data sources

The following ancillary data are available:
- Topographic maps in digital format at 1:50,000 scale, with contour interval of 20 m.
- Land cover map for the year 2000 at 1:50,000 scale.
- Soil map at scale 1:1,000,000.
- Climate data from 1995 to 2004.
Two fieldwork visits were conducted in dry and wet seasons 2005, to provide the ancillary 
data and basic soil properties needed to validate the image processing result. 

METHODS

1.5 Image pre-processing

For ASTER imagery, we used level 2 data which were atmospherically corrected at the 
data centre using a radiative transfer model and atmospheric parameters derived from the 
National Center for Environmental Prediction (NCEP) data (Abrams, 2000). ASTER images 
were registered to topographic map using second order transformation with sub-pixel RMS 
and nearest neighbourhood resampling. 

For ENVISAT ASAR imagery, first we applied a Lee filter to remove the noise, then 
carried out an image-to image geometric correction using the previously georeferenced 
ASTER imagery. Raw ASAR image amplitude values were converted to backscatter using 
the equation provided by ESA (ESA, 2004).

 ji
ji

ji K

DN
,

2
,0

, sin  

           
For i = 1…L and j= 1…M
Where K = absolute calibration constant

2
, jiDN = pixel intensity value at image line and column “i,j”

0
, ji = sigma nought at image line and column “i,j”

(Equation 1)
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 ji , = incident angle at image line and column “i,j”

Corrections for the effect of slope on local incident angle were applied to all SAR 
backscatter imagery using a slope map derived from the 1:50,000 digital topographic maps.  
The correction involved multiplying backscatter values by the ratio of backscatter received 
from a sloping surface to that received from a horizontal surface, where

)sin(/sin/
00

lociihs
 (Equation 2)

 0

s
  backscatter from sloping surface;

 0

h
  backscatter from a horizontal surface;

i    average radar incident angle

loc  local incident angle determined from elevation model

The correction effect was minor in most cases because the study sites were mostly flat.

1.5.1  Land surface temperature (LST)
LST is retrieved from ASTER level_2 product, AST_08 surface kinetic temperature. 

This product has a spatial resolution of 90 m and is generated from the ASTER thermal bands
using the TES algorithm (Gillespie et al., 1998). The product has been validated to an 
accuracy of 1K degree under clear sky condition (Wan, 1999).

1.5.2 Vegetation Index
Vegetation cover was estimated from ASTER imagery using NDVI and SAVI (Soil 

Adjusted Vegetation Index). SAVI is a modification of NDVI with an L factor to compensate 
for vegetation density. Several author recommend SAVI for sparsely vegetated areas (e.g. 
Huete, 1998; Terrill, 1994).

)1( L
LREDNIR

REDNIR
SAVI 




                   (Equation 3)

1.5.3 Soil moisture estimation
In this study we applied the data fusion approach proposed by (Sano, 1997) , in which 

the effects of soil roughness are accounted for by differencing the SAR backscatter from a 
given image and the backscatter from a "dry season" image (σo-σdry

o). The vegetation 
influence was corrected by using an empirical relationship between σo-σdry

o and the 
vegetation index.

Sano (1997) found that the vertical distance between a given point and the line defining 
the (σo-σdry

o)/Green Leaf Area Index (GLAI) relation was independent of surface roughness 
and vegetation density, and directly related to target’s surface soil moisture content. It is 
important to note that a given relationship, as illustrated in Fig. 2, would be valid only for a
single SAR configuration (i.e. sensor polarization and frequency) and would need to be 
adjusted for the influence of topography on local incidence angle. This, however, should not 
be an issue for this study, as majority of land in the test site is relatively flat. 
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Figure 2. A graphic illustration of the SAR/optical approach for evaluating surface soil 
moisture developed by (Sano, 1997). The vertical distance of points A–C from the solid 
line is related directly to soil moisture content.

To normalize the difference between pixel values and the corresponding dry scene 
values, a delta index was proposed by (D.P. Thoma et al., 2006). The delta index represents a 
change relative to dry scene backscatter, and thus the delta index should be interpreted in 
light of dry scene soil moisture. This is because any dry scene backscatter is likely to be 
affected by at least a small amount of residual soil moisture.

Delta index = 
0

00

dry

drywet


 

    (Equation 4)

Where 0
dry = backscatter from a pixel in dry season

            0
wet = backscatter from the same pixel in wet season

1.5.4 Vegetation Temperature Condition Index (VTCI)
VTCI was developed by Wan et al. (2004) and is defined as the ratio of LST differences 

among pixels with a specific NDVI value in a sufficiently large area; the numerator is the 
difference between maximum LST of the pixels and LST of one pixel; the denominator is the 
difference between maximum and minimum LST of the pixels.

VTCI = (LSTNDVIi.max - LSTNDVIi) / (LSTNDVIi.max - LSTNDVIi.min)     

where:

LSTNDVIi.max = a + b NDVIi                                                                                          

    LSTNDVIi.min = a’ + b’ NDVIi

where LSTNDVIi.max and LSTNDVIi.min are maximum and minimum LSTs of pixels which 
have same NDVIi value in a study region, and LSTNDVIi denotes LST of one pixels whose 
NDVI value is NDVIi. Coefficients a, b, a’, and b’ can be estimated from an area large 
enough where soil moisture at surface layer should span from wilting point to field capacity 
at pixel level. In practice, the coefficients are estimated from a scatter plot of LST and NDVI 
in the study area.

(Equation 6)

(Equation 5)
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Figure 3.  Schematic plot of the physical interpretation of VTCI (adapted from Wan et 
al. 2004)

VTCI can explain both the changes of vegetation in the region and the thermal 
dynamics of pixels that have the same vegetation density. It can be physically explained as 
the ratio of temperature differences among pixels (Fig. 3). The numerator of equation (4) is 
the difference between maximum LST of pixels with the same NDVI value and LST of one 
pixel, while the denominator is the difference between maximum and minimum LST of the 
pixels. In figure 2, LSTmax can be regarded as ‘warm edge’ where there is less soil moisture 
availability and plants are under dry condition; LSTmin can be regarded as the ‘cold edge’ 
where there is no water restriction for plan growth (Gillespie et at. 1997, Wang et al. 2004). 
The value of VTCI ranges from 0 to 1; the lower the value of VTCI, the closer a pixel to the 
warm edge and the higher the occurrence of drought and water stress.

1.6 Field methodologies

Two field surveys (dry and wet season) are required in order to gather the necessary 
field observations. The first field visit was conducted in January-February 2005 (dry season). 
150 sample locations were selected using a stratified random sampling method. This method 
is preferred over full random sampling because stratified sampling allowed us to distribute 
sample plots over the entire range of  land use/land cover types without bias (Congalton, 
1991; Stehman, 1999).  

Stratification was based on unsupervised classification of a January 2003 ASTER 
image. The classification results provided a general guide to the location, size and type of 
desertification. Seven land cover classes were generated by unsupervised classification, 
which corresponded to high sand dune, low sand dune, bare sandy soil, rice field, grazing 
land, scattered forest on low land, and dense forest on hilly area.
At each sample point the following parameters were measured: 

- vegetation type & cover % 
- Top soil texture (5 cm depth)
- pH, EC

- Surface roughness: measured in the field with 
paper profile

- Soil moisture (0-10 cm, and 10-20 cm). 
- Soil surface temperature
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RESULTS

1.7 Vegetation condition index

NDVI is calculated from band 3 and band 1 while LST is readily available from 
AST_08 product as mentioned in section 1.5.1. To reduce the error in spatial resolution 
differences, NDVI imagery was resampled from 15 m to 90 m, to give the same pixel size as 
the thermal band. Figure 4 is the scatter plot of LST and NDVI of the study area. The straight 
lines drawn on the scatter plot represent the ‘warm edge’ (LSTmax), and the lower limits of the 
scatter plot represent the ‘cold edge’ (LSTmin).

                             

Figure 4. Scatter plot of LST versus NDVI (ASTER image 16 June 2005).

From the ‘warm edge’ and ‘cold edge’ we get the coefficients a, b, a’, b’:
LSTNDVIi.max = 43.3 – 29.75(NDVIi)
LSTNDVIi.min = 25.2 + 0(NDVIi)

Using (Equation 7) and (Equation 5), we get the VTCI image of the study area for both 
dry and wet season. We can see that bare sandy soil areas have low VITC values in both dry 
and wet season which implies drought and water stress. The sandy soil area has a lighter tone 
in Figure 5 (a) and (b). Sand dunes along the coastal area, show unexpected results, having a 
relatively higher VTCI, from which it might be wrongly interpreted that the area was not 
suffering from water stress. This can be explained by the fact that the sand dune area is pure 
sand with no significant vegetation cover. A drought index based on vegetation stress will 
thus indicate low stress values for this area. Indices such as the VTCI should be interpreted 
with caution, and not used for areas of sparse vegetation. In the feature space of LST and 
NDVI (Figure 3), for the same temperature, if NDVI decreases VTCI will increase. On the 
other hand, for areas with the same NDVI, the higher the temperature, the higher level of 
vegetation stress, because there is less water left on the soil for plant transpiration.

(Equation 7)
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(a) (b) (c)

Figure 5. VTCI and colour composite of the study area: (a) VTCI wet season, (b) VTCI 
dry season, (c) ASTER false colour composite (band 321 in RGB). Green line the left of 
colour composite show position of the transact in Figure 6

To investigate how VTCI changes between dry and wet seasons, a 5 km transect was 
positioned crossing 3 types of land cover: sand dune, sandy soil and dry open forest. In 
general VTCI values from the wet season have higher values than the dry season, which 
reflects the overall change in water availability and a healthier vegetation condition. In the 
sand dune area (a), however, the changes between two seasons are small because of its low
ability to retain rain water in the surface layers and lack of vegetation. The flat sandy soil area 
(b) exhibits a large change in VTCI between the two seasons, clearly showing the effect of 
rainfall which boosts the vegetation growth. The sandy soil area also shows a broad range of 
variation in both seasons with bare soil having VTCI values as low as 0.1 and vegetated land 
have VTCI values as high as 0.28 in the dry season.

The open dry forest has a higher VTCI than sandy soil in the wet season due to its
ability to retain moisture and the high photosynthesis activity. In the dry season, the open dry 
forest loses all of its leaves, opens its canopy and becomes very dry, which is reflected in a 
VTCI as low as bare sandy soil.

a b c

Figure 6. VTCI profile from dry at wet season. (see Figure 5 for position on image)

Solid line: wet season

Dotted line: dry season

a: sand dune

b: sandy soil

c: open dry forest
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1.8 Soil moisture estimation

The relationship between delta index and soil moisture is determined by soil dielectric
properties. These are the dependency of dielectric constant on volumetric soil moisture, and 
the dependency of backscatter on real dielectric constant. The lower the dielectric constant, 
the more incident energy is absorbed, giving a lower backscatter value. In addition, radar 
backscatter is also affected by topography, surface roughness and vegetation cover. By taking 
the delta index we could remove those time-invariant features because they are the same in 
dry/wet season imagery. The difference in image backscatter between seasons should be due
primarily to soil moisture.

The results showed that, for the whole area, delta index backscatter were poorly correlated 
(r2= 0.58) with soil moisture content (Figure 7). This poor correlation could be attributed to 
the change in vegetation between dry and wet season as discussed earlier in section 1.7

R2 = 0.58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Volumeetric soil moisture %

D
el

ta
 i

n
d

ex

(a)

R2 = 0.89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

volumetric soil moisture %

D
el

ta
 i

n
d

ex

(b)

Figure 7. The relation between delta index backscatter and surface soil moisture: (a) all 
areas; (b) sandy soil and bare land area

Considering only the sandy soil and bare land area, there was a strong relation between 
delta backscatter and soil moisture (R2= 0.89). Using this relationship, a regional map of 
surface soil moisture was obtained for the 2005 wet season. The map showed a good contrast 
among sand dunes along the coast (green), sandy soil (red) and rice fields (yellow). Several
black areas in the middle of image are lakes which have very low backscatter in both seasons.
Forest areas (SAVI >0.4) were misinterpreted as having very low soil moisture (green area 
apart from sand dune along the coast) because the delta index model performs poorly in 
heavily vegetated areas.
Although the delta index does not yield a 1:1 relationship with soil moisture, the map 
provides a reasonable estimation of soil moisture, at least for sandy soil areas.
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Figure 8. Regional map of surface soil moisture based on delta index. Wet season 2005

DISCUSSION

The results of the initial analysis have shown that standard ASTER image products have
strong potential for desertification mapping at medium scales, clearly delineating the coastal
sand dune, sandy soil, agriculture and vegetated areas. 

VTCI calculated from two seasons of ASTER data have shown that the index can 
provide quantitative information on spatial and temporal changes caused by the
desertification process. Time series of VTCI have the potential to detect not only areas with
water stress problems but also areas which are stable over the time. This information is a 
valuable input for land use planning strategies that are aimed at combating desertification.

The preliminary results of soil moisture estimation from SAR delta index backscatter are
encouraging.  If NDVI values are less than 0.4 we can use delta index to estimate soil 
moisture, as has been demonstrated for sandy soil areas (r2=0.89). For vegetated areas (NDVI
>0.4), SAR backscatter is less successful at model soil moisture due to the influence of the 
canopy.

Soil moisture estimation when combined with VTCI and others parameters will provide 
a better view of desertification process. While delta index works well for open sandy soil, 
VTCI can provide accurate information for vegetated area. Integration of parameters 
extracted from different parts of the spectrum or different sensors gives more information on 
different aspects of the desertification process, therefore improve the mapping accuracy.
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